固态电池技术解析及市场分析
当前位置:关于美仑>资讯
更新时间: 2025/05/07

image.png

智己汽车发布的L6Max光年版搭载超快充固态电池,引发业界关注。固态电池具有高安全性、高能量密度和快速充电潜力,被认为是未来汽车工业革新的希望。

image.png

固态电池即是使用固态电解质的电池。锂电池由正极材料、负极材料、电解液、隔膜四大主材组成,起到输送离子、传导电流的作用。但液态电解质中,有机溶剂具有易燃性、高腐蚀性,同时抗氧化性较差、无法解决锂枝晶问题,因此存在热失控风险,也限制了高电压正极、锂金属负极等高能量材料的使用。固态电池则是将电解液,部分或全部替换成固态电解质。可大幅提升电池的安全性、能量密度,是现有材料体系长期潜在技术方向。

一、液态、半固体与固态电池

依据电解质分类,电池可细分为液态(25wt%)、半固态(5-10wt%)、准固态(0-5wt%)和全固态(0wt%)四大类,其中半固态、准固态和全固态三种统称为固态电池。聚合物、氧化物、硫化物是目前固态电池三大类固体电解质。

image.png

半固态电池:相比液态电池,半固态电池减少电解液的用量,增加聚合物+氧化物复合电解质,其中聚合物以框架网络形式填充,氧化物主要以隔膜涂覆+正负极包覆形式添加,此外负极从石墨体系升级到预锂化的硅基负极/锂金属负极,正极从高镍升级到了高镍高电压/富锂锰基等,隔膜仍保留并涂覆固态电解质涂层,锂盐从LiPF6升级为LiTFSI,能量密度可达350Wh/kg以上。全固态电池:相比液态电池,全固态电池取消原有电解液,选用聚合物/氧化物/硫化物体系作为固态电解质,以薄膜的形式分割正负极,从而替代隔膜的作用,其中聚合物性能上限较低,氧化物目前进展较快,硫化物未来潜力最大,负极从石墨体系升级到预锂化的硅基负极/锂金属负极,正极从高镍升级到了超高镍/镍锰酸锂/富锂锰基等,能量密度可达500Wh/kg。

image.png

二、固态电池的优点

(一)固态电池具备高安全性

随着电池能量密度的日益提升,电池热失控风险呈现上升趋势。

image.png

从热失控角度看,电池应在低于60℃运行工作,但由于内部短路、外部加热、机械滥用等因素,使电池温度升至90℃,此时负极表面的SEI膜开始溶解,造成嵌锂碳直接暴露在电解液中,二者发生反应迅速放热,产生大量可燃气体,隔膜进而熔化,电池形成内短路,温度迅速升高至200℃,促使电解液气化分解、正极分解释氧,电池发生剧烈燃烧或爆炸。

固态电池具备本质安全性,为车厂短期主要考量因素。

1、不可燃性、热稳定性:液态电解质易燃、易挥发,分解温度约200℃(隔膜160℃),并存在腐蚀和泄露的安全隐患。而固态电解质具有不可燃、无腐蚀、无挥发等特性,分解温度大幅提升,可在更高倍率和更高温度运行,同时内部无液体不流动,电池可承受穿钉、切开、剪开、折弯,从而大幅降低热失控风险。

2、锂枝晶:液态电池中,锂枝晶的生长容易刺破隔膜,从而造成短路,而固态电解质具备高机械强度,锂枝晶生长缓慢且难刺透,进而提升电池安全性能。

(二)固态电池具备高能量密度

固态电解质兼容高比容量的正负极,大幅提升电池的能量密度,为车厂长期主要考量因素。固态电池在兼顾安全性的基础上,可实现能量密度的突破,液态电池可达250Wh/kg+,半固态可达350Wh/kg+,准固态可实现400Wh/kg+,全固态可突破500Wh/kg,从而提升续航水平,有望解决电动车里程、安全两大核心痛点。

固态电解质本身不能提升能量密度,由于具备更稳定、更安全,电化学窗口宽(5V以上)等性质,因此可以兼容高比容量的正负极,比如高电压正极、富锂锰基、硅负极、锂金属负极等材料,进而大幅提升电芯能量密度;将电解液的隔膜功能合二为一,大幅缩小正负极间距,从而降低电池厚度,因此提升电芯能量密度;由于电解质的非流动性,可以实现电芯内部的串联、升压,可以降低电芯的包装成本,并提升体积能量密度。固态电解质的安全性,可以减少系统热管理系统需求,成组效率大幅提升,从而提升Pack能量密度。

三、固态电池的缺点

(一)固态电池离子电导率低,循环寿命差,固态电池界面为固-固接触,离子电导率低、界面稳定性差,存在循环、快充等问题,制约其商业化进程。

image.png

固态电池中,电极与电解质之间的界面接触由固-液接触变为固-固接触,由于固相无润湿性,因此接触面积小,形成更高的界面电阻。同时固体电解质中有大量的晶界存在,且晶界电阻往往高于材料本体电阻,不利于锂离子在正负极之间传输,从而影响快充性能和循环寿命。

-固接触为刚性接触,对电极材料体积变化更为敏感,循环过程中容易造成电极颗粒之间以及电极颗粒与电解质接触变差,造成应力堆积,导致电化学性能衰减,甚至导致裂缝的出现,造成容量迅速衰减,导致循环寿命差的问题。

(二)固态电解质含稀有金属,成本明显高于液态电池,主要体现在固态电解质和正负极。固态电解质目前难以轻薄化,用到的部分稀有金属原材料价格较高,氧化物电解质含锆、硫化物电解质含锗,叠加为高能量密度使用的高活性正负极材料尚未成熟,铜锂复合带价格1万元/kg,全固态对生产工艺、成本和质量控制也提出了更严苛的要求,生产设备替换率大,全固态电池成本预计明显高于现有液态电池。

四、固态电池行业现状及发展趋势

固态电池技术发展和应用预计将呈现梯次渗透趋势。预计液态电池到固态电池的技术迭代路径大致遵循“固态电解质→新型负极→新型正极”顺序。

image.png

阶段一:引入固态电解质,保留少量电解液,正负极仍为三元+石墨/硅负极,并采用负极预锂化等技术提高能量密度;

阶段二:用固态电解质逐步至完全取代电解液,用金属锂取代石墨/硅负极,正极仍为三元材料;

阶段三:逐渐减薄固态电解质的厚度,并用硫化物/镍锰酸锂/富锂锰基等材料取代正极。

半固态:兼具安全、能量密度与经济性,率先进入量产阶段。半固态电池通过减少液态电解质含量、增加固态电解质涂覆,兼具安全性、能量密度和经济性,率先进入量产阶段。全固态电池工艺并不成熟,仍处于实验室研发阶段,而半固态电池已经进入量产阶段。半固态电池保留少量电解液,可以缓解离子电导率问题,同时使用固化工艺,将液态电解质转化为聚合物固态电解质,叠加氧化物固态电解质涂覆正极/负极/隔膜,提升了电池的安全性/能量密度,同时兼容传统锂电池的工艺设备,达到更易量产较低成本的效果,预计半固态电池规模化量产后,成本比液态锂电池高10-20%。

五、固态电池产业情况

固态电池技术迭代基于液态体系,顺序遵循固态电解质-新型负极-新型正极。主流厂商按照半固态到全固态的发展路径布局,核心变化在于引入固态电解质,电解质预计从聚合物+氧化物的半固态路线,向氧化物半/全固态路线,再向硫化物全固态路线迭代;负极从石墨,向硅基负极、含锂负极,再向金属锂负极升级;正极从高镍三元,向高电压高镍三元、超高镍三元,再向尖晶石镍锰酸锂、层状富锂锰基等新型正极材料迭代;隔膜从传统隔膜,向氧化物涂覆隔膜,再向固态电解质膜升级。

产业链方面,电池端企业主要有宁德时代、比亚迪、卫蓝新能源、清陶能源、亿纬锂能、赣锋锂业、辉能科技、国轩高科、孚能科技、蜂巢能源等;固态电解质企业主要有天目先导、蓝固新能源、奥克股份、上海洗霸、金龙羽、瑞泰新材等;固态电解质前驱体锆源/锗源企业有东方锆业、三祥新材、云南锗业、驰宏锌锗等;负极企业有兰溪致德、贝特瑞、翔丰华等;正极企业有容百科技、当升科技等;隔膜企业有恩捷股份等;此外整车企业以自研或增资入股等方式积极入局,代表公司有丰田、日产、本田等。

image.png

(一)宁德时代

1.凝聚态电池

宁德时代推出凝聚态电池,兼具高比能和高安全,并且可以快速实现量产,能量密度可高达500Wh/kg。该电池采用高动力仿生凝聚态电解质,构建纳米级别自适应网络结构,调节链间相互作用力,在增强微观结构稳定性的同时,提高电池动力性能,提升锂离子运输效率。此外凝聚态电池还聚合了包括超高比能正极、新型负极、隔离膜以及新工艺等一系列创新技术,使之既具备优秀的充放电性能,又具备高的安全性能。目前,宁德时代正在进行民用电动载人飞机项目的合作开发,执行航空级别标准与测试,满足航空级别安全与质量要求。同时,宁德还将推出凝聚态电池的车规级应用版本。

image.png

2.硫化物全固态电池

布局最具潜力的硫化物全固态电解质,宁德时代自13年起申请固态电池相关专利,具有多年技术储备,其中9项专利内容中含有硫化物固态电解质,专利内容包含基于硫化物的固态电解质、正极极片、固态电池、电池材料回收等方面。公司目前已有高能量密度的固态电池实验室样品,但距离实现商业化仍需5年以上。针对高端市场,宁德时代将持续投入全固态锂金属等新材料技术的研发,以锂金属负极材料为发展方向,正极材料由传统三元向高压三元、无金属材料迭代升级,通过不断攻关工艺难题与关键技术,争取到2030年前后实现真正意义上的超长续航、安全及具成本竞争力的锂电池技术。

(二)比亚迪

2011年起申请固态电池相关专利,截止23年3月已申请50余项,获30余项专利授权,申请中专利10余项,专利储备丰富。比亚迪公司技术路线包含聚合物、氧化物、硫化物和复合固态电解质,其中聚合物路线主要包括PEO和聚烯酸酯类,氧化物、硫化物和复合固态电解质路线研究范围广泛,多种路线同步进行,不断升级迭代。此外,不断优化正/负极材料,对三元正极包覆硫化物电解质、钼酸盐等以改善离子传输和循环性能;负极采用硅基核壳结构、锑/铋锂合金以提高离子/电子电导性和电化学性能。申请固态电解质相关的专利覆盖固态电解质材料、正/负极材料修饰与改性、电池结构、电池包与模组设计等,专利覆盖范围广泛,技术储备丰富,符合公司发展战略,结合传统电池包向CTC路线发展的趋势,推测第三代刀片电池可能使用固态软包。

(三)清陶能源

清陶(昆山)能源发展股份有限公司成立于2016年,由中科院院士、清华大学教授南策文团队领衔创办。团队深耕固态电池20余年,已获300多项专利授权。公司已突破核心固态电解质(LATP、LLTO、LLZO)的生产技术,并可以通过高速分散、流延成型等方式,制备含氧化物颗粒在聚合物骨架上均匀分散的复合电解质膜,拥有粉体、浆料、电解质涂覆等完整工序,率先实现了半固态电池的量产。公司先后获北汽、上汽、广汽等公司战略投资,并与哪吒等车企建立长期合作关系。

清陶能源正极、电芯生产工艺如下图所示:

image.png

2018年11月,清陶能源建成首条固态电池量产线(0.1gwh,400Wh/kg),应用于特种电源、高端数码等消费领域。2020年7月,搭载清陶固态电池系统的北汽、哪吒U纯电样车下线,2021年11月,轻量化固态电池产品携手广汽埃安亮相车展,电芯能量密度达320Wh/kg。2021年12月,与上汽合作完成368Wh/kg,1083kmCLTC续航的实车验证,并于2023年率先应用于上汽自主品牌新款车型。22年11月,与北汽福田联合开发的首套量产商用车固态电池系统已完成调试、正式下线。公司2022年底产能1.7gwh,远期规划产能35gwh。自研自产固态电解质粉体材料,此外与利元亨、当升科技、翔丰华达成战略合作,保障设备及正负极材料供给

image.png

(四)亿纬锂能

成立于2001年,于2009年在深圳创业板首批上市,历经23年快速发展,已成为具有全球竞争力的锂电池平台公司,同时拥有消费电池、动力电池、储能电池核心技术和全面解决方案。

2022年12月,亿纬锂能在新技术新产品发布会中公布了半固态、全固态电池产品及未来技术布局,首代半固态技术基于50Ah软包电池,能量密度330Wh/kg,循环寿命超过1000次,电池工作温度范围扩展至-20—80℃,产品已于22年完成设计定型,目前处于装车测试阶段。

公司已有的全固态薄膜软包电池技术基于卤化物体系,可适应特殊高温及弯折条件,搭配高镍正极可以在150℃高温温区稳定放电,柔性技术使电池在120°弯曲条件仍可正常充放电。公司计划于24年完成全固态电池1.0技术研发,能量密度为350Wh/kg,循环寿命300次以上,首代全固态电池产品在机器人/消防设备、内置医疗、VR/曲面屏等高端消费领域应用潜力巨大。公司在固态电解质领域拥有数十年研发经验,公司全固态技术迭代将分为三个阶段,未来将重点研发氧化物、硫化物、卤化物路线,旨于打造高比能、极致安全的固态电池体系。目标于28年实现全固态电池3.0技术迭代,能量密度提升至550Wh/kg、循环寿命1000次+、且具备高安全性、高柔性、耐高温等特性,以满足动力电池领域需求。亿纬锂能能固态电池技术布局路线见下表:

image.png

(五)国轩高科

国轩高科股份有限公司成立于2006年5月,是国内最早从事新能源汽车动力锂离子电池自主研发、生产和销售的企业之一。公司主要产品为磷酸铁锂材料及电芯、三元材料及电芯、动力电池组、电池管理系统及储能型电池组。产品广泛应用于纯电动乘用车、商用车、专用车、轻型车等新能源汽车领域,同时为储能电站、通讯基站等提供系统解决方案。

2022年5月,公司发布首款半固态电芯产品,通过固态电解质复合正极(LATP包覆)、固态电解质功能离子膜、单体原位固态化技术、掺硅补锂、复合集流体等工艺,实现单体能量密度360Wh/kg,Pack能量密度260Wh/kg,配套车型的电池包电量达160kwh,续航里程超过1000km。产能方面,2022年底半固态产能1gwh左右,2023年H1正式投产更大规模的半固态产线。

公司已有400Wh/kg的三元半固态电池实验室原型样品,未来还将通过技术创新落地硅基负极迭代,锂金属负极和预锂技术,加速液态电池向半固态过渡,最终实现全固态,目标是25年后做出能量密度800Wh/L+、对应400Wh/kg+、循环800次的全固态电池,采用富锂材料、硫系或其他正极材料,负极方面采用锂负极及界面修饰技术,打造内串高电压无模组电池包。国轩高科固态电池总体目标见下表:

image.png

(六)蜂巢能源

蜂巢能源于2018年注册成立,子公司日本蜂巢专注于固态电池和前沿技术开发。半固态电池方面,公司果冻电池采用安全涂层和凝胶电解质技术,实现高的离子电导率(接近电解液水平)和高的阻燃性(空气中不可燃)。一代电芯形式多样,包括方形短刀(230Wh/kg)、软包电芯(270Wh/kg),循环寿命2000次以上,二代电芯拟完成300-350Wh/kg技术开发,预计选用聚合物+氧化物路线,目前处于中试阶段。全固态电池方面,实现离子电导率10mS/cm,电解质膜厚20μm,能量密度350-400Wh/kg,循环寿命1000次,已顺利通过针刺、200℃热箱等实验测试,目前处于样件阶段。

image.png

(七)卫蓝新能源

北京卫蓝新能源科技有限公司是一家专注于全固态锂电池研发与生产、拥有系列核心专利与技术的国家高新技术企业,由中国工程院院士陈立泉、中科院物理所研究员李泓、原北汽新能源总工俞会根共同发起创办,是中国科学院物理研究所清洁能源实验室固态电池技术的唯一产业化平台。承接所有相关专利,研发实力全面领先,获小米集团、蔚来资本、华为哈勃、天齐锂业、吉利控股等入股。公司主打半固态路线,采用聚合物+氧化物(LATP为主)复合路线,首创原位固态化等八大核心工艺,改善固-固界面接触,并与液态电池工艺基本兼容。

卫蓝新能源半固态电芯制备工艺流程如下图所示:

image.png

卫蓝不断完善产业布局,在北京房山、江苏溧阳、浙江湖州和山东淄博拥有4大生产基地。2019年3月,固态电池一期项目奠基,项目总投资5亿元,一期项目投资1.8亿元。2021年12月,恩捷、北京卫蓝、天目先导携手共建固态电解质涂层隔膜项目,总投资13亿元。2022年2月,北京卫蓝100GWH固态锂电池项目开工,总投资400亿元。2022年11月,湖州基地车规级固态动力电芯产业化工程项目完成了基地厂房建设及产线投建。

2020年8月,公司溧阳基地中试线投产(0.2gwh),针对无人机、AGV等消费领域,能量密度达275Wh/kg,支持7C高功率放电。2022年6月,公司湖州基底投产(2gwh),针对动力领域,能量密度达360Wh/kg,23年上半年开始规模量产,搭载蔚来ET7的150kwh电池包上线,续航里程突破1000km,成本较为昂贵,仍需规模效应和研发突破,进一步降本。此外公司已开发铁锂储能电芯,具备本征安全属性,能量密度150Wh/kg,已开始示范应用(4MWh)。全固态电池方面,公司计划24、25年推出400、500Wh/k**品,量产进度较为领先。

卫蓝公司2022年底产能2.2gwh,远期产能规划超50GWh。公司电解质与天目先导、蓝固新能源、盟固利合作,正极与容百、当升签订战略合作协议,负极与天目先导、贝特瑞、天齐锂业合作,隔膜与恩捷股份签约,形成完善产业链布局。

image.png


注:文章中引用数据和图片来源网络